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Abstract
The K-distribution model for non-Gaussian statistics of scattered radiation
is reviewed; the roles played by optical and radar measurements in its
development and the complementary insights they provided are highlighted.
A diffusive model for the K process is reviewed that makes contact with
the fluctuating population and compound models inspired respectively by the
optical and radar measurements. The intensity volatility of K-distributed clutter
has been measured and found to differ from that characteristic of Gaussian
speckle; the original diffusive model has been modified to take account of this
observation. Significant problems are encountered in the computer simulation
of K-distributed clutter; the diffusive models are insufficiently flexible to
accommodate realistic correlation properties or to generate two-dimensional
clutter images. Nonetheless the underlying phenomenology incorporated in the
K model allows us to overcome these problems and practically useful simulation
techniques have been devised.

1. Introduction

At the time of our collaboration, some 20 or more years ago, Peter Pusey often used to comment
on the useful transfer of insights gained from scattering measurements from one wavelength
regime to another. So, for example, the de Gennes narrowing phenomenon observed in
neutron scattering from atomic systems has an analogue in the decay of the dynamic structure
factor of a suspension of Brownian particles, probed at optical wavelengths [1], and again,
the non-Gaussian statistical properties of the radiation scattered from a focused-down laser
beam by a localized random medium have much in common with those of the unwanted
but unavoidable sea clutter returns that plague the operation of high resolution maritime
radars. Quite remarkably, equivalent models of these non-Gaussian statistics were developed,
simultaneously and independently, prompted by the light scattering [2] and radar [3] studies,
and the K distribution came into being. Random walks and Brownian motion also figured
prominently in our discussions,as models for both particle dynamics [4] and the light scattering
process itself [5]. Their descriptions in terms of Langevin and Fokker–Planck equations were
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mulled over and ultimately reconciled [6],prompting an attempt to accommodate K-distributed
speckle and clutter processes within such a formal framework [7]. Since the mid-1980s
considerable impetus has been given to the study of Langevin and Fokker–Planck equations
(in the guise of the Itô calculus) by their utility in the analysis of derivatives and other financial
instruments [8]. Bearing some of these developments in mind we revisit the diffusive model,
paying particular attention to the volatility (‘short time diffusion constant’) characterizing
the evolution of the intensity of the process [9]. This suggests that a modification of the
model presented in [7] is needed if we are to correctly describe the short time behaviour of
the intensity. When we attempt to model sea clutter through computer simulation we find
that simple diffusive models have significant shortcomings. Nonetheless, their underlying
phenomenological basis is sufficient to guide us to a useful simulation technique, provided
we are able to generate gamma-distributed random variables with a prescribed correlation
function. The method we develop to achieve this in practice can also be adapted to an arbitrary
correlated non-Gaussian process, and has found application in a variety of contexts [10, 11].
As an example, we discuss briefly how the coherent Doppler properties of sea clutter can be
simulated realistically.

2. Random walks, coherent scattering and diffusion

We start our discussion with a brief review of random walks and associated processes that form
the building blocks of our model. The electric field returned from N coherently illuminated
scatterers can be written as a two-dimensional vector sum of the contributions ak from the
individual scatterers

E =
N∑

k=1

ak (1)

and be thought of as the resultant of a random walk of N steps. We assume that the ak are
independent, isotropically distributed and statistically identical; the characteristic function of
the distribution of E can then be written as

〈exp(iU · E)〉 = 〈J0(Ua)〉N . (2)

(J0 is a zeroth order Bessel function.) To investigate the limit of a large number of scatters we
scale a → a/

√
N to maintain a finite scattered energy, and find that the characteristic function

tends to

lim
N→∞

〈
J0

(
Ua/

√
N

)〉N = exp(−U 2〈a2〉/4); (3)

the corresponding distribution of the electric field has the familiar Gaussian form

P(Ex , Ey) = exp(−(E2
x + E2

y)/〈a2〉)
π〈a2〉 . (4)

This distribution of the field, returned from many independent scatterers, formed the basis of
the classical assessments of radar performance carried out in the early 1940s [12]. It was only
with the advent of high resolution radar systems, which effectively illuminated a small number
of scatterers other than a possible target, that this model was found to be inadequate. As we
mentioned earlier, laser measurements revealed essentially the same phenomenon at optical
wavelengths.

Diffusion can be regarded as a continuous limit of a random walk process, described in
terms of either a Langevin or a Fokker–Planck equation. In the former the statistical element
is introduced as a Gaussian white noise term driving a diffusing particle’s motion; the latter is
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a partial differential equation describing the evolution in time of the probability density of the
particle’s position, given that at time zero. For a freely diffusing particle in one dimension we
might write the Langevin equation as

dx

dt
= f (t); 〈 f (t1) f (t2)〉 = Aδ(t1 − t2) (5)

which we can integrate formally to yield

x(t) − x(0) =
∫ t

0
f (t1) dt1. (6)

The corresponding FP or diffusion equation is

D
∂2 P(x, t|x(0))

∂x2
= ∂ P(x, t|x(0))

∂ t
; (7)

for these two descriptions to be equivalent we make the identification

A ≡ 2D (8)

in (5). In a simple situation such as this, physical intuition allows us to make the connection
between the Langevin and FP descriptions fairly unambiguously. The simple Brownian
motion described by (5) forms the basis of the stochastic calculus developed by Itô. This
both overcomes the mathematical difficulties presented by the white noise driving term in (5)
and provides a formal framework within which more complicated Langevin (or stochastic
differential) equations can be manipulated and interpreted. Transformations in the dependent
variables in the SDEs and the identification of their associated FP equations can be carried
through systematically, on the basis of a few relatively simple rules. Thus we define the
Brownian process Bx(t) as a zero-mean Gaussian with the correlation property

〈Bx(t1)Bx(t2)〉 = min(t1, t2). (9)

Stochastic integration with respect to the Brownian measure provided by this process is
defined through the limit of a sum∫ tb

ta

φ(x(t), t) dBx(t) = lim
n→∞

n∑
k=1

φ(x(tk−1), tk−1)[Bx(tk) − Bx(tk−1)];
ta = t0 � t1� tn = tb. (10)

The increment dBx(t) in this process in the infinitesimal time dt itself has a zero mean; its
square, however, is identically equal to dt , i.e.

(dBx(t))
2 = dt, (11)

without recourse to any ensemble averaging. This last property is a consequence of the
continuity in the Brownian path. Armed with these preliminaries we re-write (5) as

dx(t) = √
2D dBx(t). (12)

This can be supplemented by a deterministic drift term; in the case of the over-damped harmonic
oscillator the SDE takes the form

dx(t) = −γ x dt +
√

2D dBx(t). (13)

A more general SDE in the variable x is

dx(t) = a(x) dt +
√

2b(x) dBx(t); (14)

here we have introduced an arbitrary drift term and allowed the diffusion ‘constant’ (whose
square root b is referred to as a volatility in financial circles [8]) to vary with x . Solutions to
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such SDEs can be developed formally by iteration, and investigated by numerical simulation.
The FP equation for the conditional probability density of x , evolving subject to (14), is

∂ P(x, t)

∂ t
= − ∂

∂x
(a(x)P(x, t)) +

∂2

∂x2
(b(x)2 P(x, t)). (15)

The SDE satisfied by f = f (x) is given by

d f (t) = d f

dx
dx(t) +

1

2

d2 f

dx2
(dx(t))2 = d f

dx
(a(x) dt +

√
2b(x) dBx(t)) +

d2 f

dx2
b(x)2 dt

=
(

d f

dx
a(x) +

d2 f

dx2
b(x)2

)
dt +

√
2b(x)

d f

dx
dBx(t) (16)

showing how both the drift and volatility transform under a change in variable. The extension
of these rules to several variables is straightforward. The interested reader can find a much
fuller account of Itô calculus and related issues in Oksendal’s text [13].

This formalism allows us to derive SDEs for the intensity and phase of the Gaussian
speckle process obtained from the simple random walk picture. If we assume the process to
be Markovian then the in phase and quadrature components of the field each satisfy an SDE
analogous to (13), incorporating the effect of a carrier frequency ω

d p1(t) = −
(

1

2
p1 + ωp2

)
dt +

1√
2

dB1(t)

d p2(t) = −
(

1

2
p2 − ωp1

)
dt +

1√
2

dB2(t).

(17)

If we identify the intensity and phase of the process through

u = p2
1 + p2

2, φ = tan−1

(
p2

p1

)
(18)

carry out the manipulations implicit in (16) and recall that the variance of a sum of independent
Gaussian processes is the sum of their individual variances, we find that the SDEs for the
intensity and phase are

du(t) = (1 − u(t)) dt +
√

2u(t) dBu(t)

dφ(t) = ω dt +

√
1

2u(t)
dBφ(t).

(19)

Here Bu, Bφ are independent Brownian processes. In each we see that the volatility of
the process depends explicitly on the intensity; ‘multiplicative noise’ arises quite naturally
in this diffusive description of the scattered light. The FP equation satisfied by the intensity
probability density is

∂ P(u, t)

∂ t
= ∂2

∂z2
(u P(u, t)) +

∂

∂u
((u − 1)P(u, t)), (20)

noting that 〈u〉 = 1.

3. Non-Gaussian light scattering and sea clutter—the K distribution

Thus far we have seen how a Gaussian speckle process emerges from the random walk picture
of coherent scattering, in the limit of a large number of scatterers. In an attempt to model
non-Gaussian statistics Jakeman and Pusey [14] considered the effect of fluctuations in the
number of scatterers. An un-bunched Poisson distributed population was found not to induce
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non-Gaussian effects in the limit of a large mean population number. A negative binomial
equilibrium population

P(N) =
(

µ − λ

µ

)ν/λ(
λ

µ

)N
(ν/λ)N

N!
(21)

displays a characteristic bunching and is established by competing processes of birth, death
and migration. These are in the rate equation satisfied by P(N, t), the probability that the
population takes the value N at time t:

dP(N, t)

dt
= µ[(N + 1)P(N + 1, t) − N P(N, t)] + ν[P(N − 1, t) − P(N, t)]

+ λ[(N − 1)P(N − 1, t) − N P(N, t)]. (22)

The mean equilibrium population is given by

N̄ = ν

µ − λ
(23)

while its temporal fluctuations are characterized by [15]

〈N(0)N(t)〉
N̄2

= 1 +

(
1

α
+

1

N̄

)
exp(−νt/N̄ ). (24)

The characteristic function of the scattered radiation now takes the form

〈exp(iU · E)〉 =
∞∑

N=0

P(N)〈J0(Ua)〉N =
(

µ − λ

µ − λ〈J0(Ua)〉
) ν

λ

. (25)

By scaling the individual scattering amplitudes with the square root of the mean population
we find that, as N̄ → ∞, the characteristic function takes the form

〈exp(iU · E)〉 = 1(
1 + λ〈a2〉U2

4ν

) ν
λ

(26)

typical of the K distribution. The infinite divisibility of the K distribution is evident from
this result; this property first alerted Jakeman and Pusey [2] to the potential usefulness of this
model. Rather than recovering the pdf of the scattered field amplitude by evaluating

P(E) = E
∫ ∞

0
U J0(U E)

(
1 +

λ〈a2〉U 2

4ν

)− ν
λ

dU (27)

directly, we cast it into another, potentially more revealing, form. To this end we introduce the
integral representation

1(
1 + λ〈a2〉U2

4ν

) ν
λ

= 1

�(ν/λ)

∫ ∞

0
dx xν/λ−1 exp(−x(1 + λ〈a2〉U 2/4ν)) (28)

invert the order of integration and find that

P(E) = 2E

�(α)
(α/〈a2〉)α

∫ ∞

0
dx xα−1 exp(−αx/〈a2〉)exp(−E2/x)

x
α = ν

λ
. (29)

The corresponding intensity distribution is

P(z) = 1

�(α)
(α/〈a2〉)α

∫ ∞

0
dx xα−1 exp(−αx/〈a2〉)exp(−z/x)

x
. (30)

Thus we see that the scattered electric field is represented as a speckle process (cf (4)) whose
‘local power’ x is itself a gamma-distributed randomly varying quantity. This interpretation
of the K distribution [3] arises quite naturally in the analysis of maritime radar data, which
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typically take the form of a time series. Over short periods the Gaussian speckle statistics
are evident, the process de-correlating over a time typical of transit of small scale sea surface
features through the microwave wavelength (of the order 0.1 s). This speckle can be de-
correlated effectively instantaneously by frequency agility, providing sufficient independent
samples for the local Gaussian speckle model to be verified. The statistics of the measured
local power of this process can be analysed; the gamma distribution has emerged as an
excellent model in the overwhelming majority of sea clutter data studied. The modulation
represented by the gamma variate may be associated with the large scale structure of the sea
surface, partially resolved by the high resolution radar; its de-correlation time is typically of
the order of seconds or more. A particular advantage of this compound form of the clutter
model, incorporating the large separation in the timescales characteristic of the speckle and its
modulation, is that it greatly facilitates the calculation of radar performance in non-Gaussian
clutter. Performance in Gaussian clutter had been analysed extensively in the 1940s and 1950s
and the predictions verified [12]. When high resolution maritime radars were introduced in the
1970s, and effectively vitiated any appeal to the central limit theorem to justify the assumption
of Gaussian statistics, the clutter was found to be ‘out of spec’. As the compound K model was
found to describe this aberrant clutter quite adequately, the classic performance calculations
could be redeemed, simply by averaging their results over the ubiquitous gamma distribution
of local power.

4. Fokker–Planck and SDE descriptions of the K process

The compound representation of the K process is expressed in terms of continuous variables
from the outset, and is perhaps the most convenient starting point for the development of its
diffusive description. Equation (20) provides us with the appropriate continuous formulation
of the speckle process; can we obtain a similar description of the gamma modulation from the
negative binomial process? To investigate the continuous limit of the rate equation (22) we
define a variable x through N = N̄ x and expand out in inverse powers of N̄ . We can write
the rate equation in terms of the PDF of x so that, on making a Taylor series expansion of the
PDF and retaining terms up to second order in 1/N̄ , we find that

1

N̄

∂ P(x, t)

∂ t
= 1

N̄
(µ − λ)

∂

∂x
(x P(x, t))

+
1

N̄2

(
1

2
(µ + λ)x

∂2 P(x, t)

∂x2
+ (µ − ν + λ)

∂ P(x, t)

∂x

)
. (31)

If we are to allow N̄ to become large, much as was done in the earlier scaling arguments that
led to the K distribution, and we wish to keep the parameter ν constant, then µ, λ must tend to
the same value. Thus we write

1

N̄
(µ − λ) = ν

N̄2
(32)

in the first set of terms and put µ = λ in the second. Finally, if we re-scale the time variable
to t ≡ t/N̄ (cf (24)) we end up with an archetypal Fokker–Planck equation

∂ P(x, t)

∂ t
= λ

∂2

∂x2
(x P(x, t)) + ν

∂

∂x
((x − 1)P(x, t)) (33)

whose equilibrium solution has the expected gamma distribution form

P(x) = xα−1 exp(−x)

�(α)
. (34)
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The equivalent SDE satisfied by x is

dx(t) = ν(1 − x(t)) dt +
√

2λx(t) dBx(t). (35)

Having assembled the constituent parts of the compound K model in diffusional form, it
remains for us only to fuse them together. We have argued that the variable x is identified with
the local power of the speckle process; thus we might modify the first of (19) to

dz(t) =
(

1 − z(t)

x(t)

)
dt +

√
2z(t) dBz(t). (36)

The equilibrium density of z, x is maintained in the form

P(z, x) = exp(−z/x)xα−2 exp(−x)

�(α)
(37)

arising in the integrand in (30) if x satisfies the SDE

dx(t) = A(α − x(t) + z(t)/x(t)) +
√

2Ax(t) dBx(t). (38)

The FP equation equivalent to (36) and (38) is

A

{
∂2

∂x2
(x P(z, x, t)) +

∂

∂x
((x − α − z/x)P(z, x, t))

}
+

{
∂2

∂z2
(z P(z, x, t))

+
∂

∂z
((z/x − 1)P(z, x, t))

}
= ∂

∂ t
P(z, x, t). (39)

The introduction of the constant A into the model enables us to control the relative rates of
de-correlation of the speckle (z) and modulation (x) processes; typically A is much less than
unity. In constructing this diffusive description of the K clutter process we have been guided
by the requirement that (37) is indeed the stationary solution of the FPE and that the SDEs (36)
and (38) resemble (19) and (35).

Thus far, we have followed [7] quite closely. Alternatively we might represent the intensity
of the K process as the product of a Rayleigh process u with unit power (cf (19) and (20)) and
the modulating gamma process x (35). Using the rules of Itô calculus we can derive the SDE
satisfied by this intensity as

z = xu;
dz = x du + u dx + du dx

= x((1 − u) dt +
√

2u dBu(t)) + u(A(α − x) dt +
√

2Ax dBx(t))

= (x(1 − u) + u A(α − x)) dt + x
√

2u dBu(t) + u
√

2Ax dBx(t)

=
[
−(1 + A)z +

αAz

x
+ x

]
dt +

√
2(xz + Az2/x) dBz(t).

(40)

The Fokker–Planck equation describing the evolution of the joint pdf of the z and x variables
now takes the form

∂ P(x, z, t)

∂ t
= ∂2

∂z2

((
xz +

z2 A

x

)
P(x, z, t)

)
− ∂

∂z

((
x +

z A

x
− (1 + A)z

)
P(x, z, t)

)

+ A
∂2

∂x2
(x P(x, z, t)) − A

∂

∂x
((α − x)P(x, z, t)) + 2A

∂2

∂x∂z
(z P(x, z, t)).

(41)

The correlation between the random components in the increments in z and x in this model is
manifest in a diffusion tensor with non-diagonal elements; nonetheless, it is a simple matter
to verify that (37) is the stationary solution of (41).
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As we mentioned in the introduction, considerable attention has been focused on the
use of SDEs in the modelling of financial instruments. One feature of this work has been
the emphasis it places on the volatility-driven random terms, at the expense of deterministic
drift terms. To discuss this point in any detail would take us too far afield. Here we merely
comment that the celebrated Black–Scholes option price formula [8] is independent of the
drift term characterizing the evolution of the asset price and that (cf (11)) an instantaneous
estimate of a volatility can be made without recourse to ensemble averaging. To assess the
validity of these diffusive models of the K process an analysis of the intensity volatility has
recently been carried out on both radar and optical data [9]. It has been found that the volatility
for the evolution in the intensity deviates from the simple root intensity form characteristic of
Gaussian speckle (cf (19)); the modified result

(dz)2 = 2

(
xz +

Az2

x

)
dt (42)

captures the short time behaviour of both the optical and radar measurements. This finding
suggests that the compound product model (40) is better able to describe the clutter process
adequately. An anomaly detector has been devised based on the comparison of intensity
volatility measurements with the form (42) and has been shown to be able to pick out small
target radar returns obscured by sea clutter [9].

5. The simulation of non-Gaussian sea clutter

While FP equations such as (39) and (41), in which a linear operator generates time evolution,
are quite well suited to formal manipulation, they very rarely admit closed form analytic
solutions. Although (20) and (33) can be solved in terms of relatively familiar special
functions [16], the solutions of (39) and (41) remain intractable. The SDE formulation of
the problem perhaps provides us with an alternative, simulation route to the study of the K
process. Some progress has been made along these lines [17]; in many practical circumstances,
however, the diffusive formulation we have presented here is not sufficiently flexible to allow
us to capture the salient features of sea clutter. Frequently we wish to simulate clutter with
prescribed correlation properties; in the maritime context it is reasonable that these might have
a damped, quasi-oscillatory character. Equations (36), (38) and (40) do not provide us with
sufficient latitude to generate and control this sort of behaviour. An even greater problem is
presented by the requirement that we generate a two-dimensional texture, with K-distributed
single-point statistics and some prescribed two-point statistics. Our SDE formulation limits us
quite severely to the generation of time series. Are there nonetheless features of the diffusive
modelling of clutter that we can exploit in more realistic simulations?

The large separation of timescales over which the speckle and power modulation processes
in (39) de-correlate allows us to effectively de-couple them, to simulate them separately and
finally re-combine them multiplicatively to generate a clutter model. The product model
described by (41) also suggests a simulation of this type. Because the local speckle process is
Gaussian its correlation properties can be tailored quite effectively by linear techniques such
as filtering or, equivalently, spectral weighting and Fourier synthesis. Thus we are left with
those problems posed by the simulation of the modulating process. As mentioned earlier, there
is a significant body of empirical evidence that supports the gamma model. Taken on its own
the SDE (35) can furnish us only with time series data with a single exponential decaying
correlation function and so is far too restrictive for our purposes. The relative ease with which
we can control the correlation properties of Gaussian processes, be they time series or random
fields, suggests that we consider how those correlation properties change when a zero-mean,
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unit-variance Gaussian process is transformed into some non-Gaussian process by a non-linear
transformation. Such a transformation can be defined by equating the cumulative distribution
of the Gaussian process, evaluated at the value x taken by this process, with the cumulative
distribution of the required non-Gaussian process, thus determining the latter’s value η. So, if
the pdf of the values η is Pdist (η), we set∫ ∞

η

Pdist (η
′) dη′ = 1√

2π

∫ ∞

x
exp(−x ′2/2) dx ′ = 1

2
erfc

(
x/

√
2

)
(43)

where, in the second equality, we have identified the complementary error function (see [18],
ch 7). To generate a gamma-distributed random variable, for example, we must solve

1√
2π

∫ ∞

x
exp(−x ′2/2) dx ′ = 1

�(α)

∫ ∞

y
y ′α−1 exp(−y ′) dy ′. (44)

The complementary quantile function Qdist (ζ ) of the required distribution is now defined by∫ ∞

Qdist (ζ )

Pdist (η) dη = ζ ; (45)

using this we can write the non-linear transform that takes the input Gaussian random values
into the corresponding values of the required non-Gaussian random variable as

η(x) = Qdist
(
erfc

(
x/

√
2
)
/2

)
. (46)

A rapidly evaluable representation of (46) is a prerequisite if this approach is to be practically
feasible; [19] describes ways in which this can be constructed for the gamma distribution.

Values of η, generated from correlated values of x , will themselves be correlated; their
correlation function can be expressed in the form

〈η1η2〉 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 η(x1)η(x2)PG(x1, x2, RG), (47)

where the joint distribution of x1, x2 is

PG(x1, x2, RG) = 1

2π

√
1 − R2

G

exp(−(x2
1 + x2

2 − 2x1x2 RG)/2(1 − R2
G)). (48)

By expanding this in terms of Hermite polynomials (see [18], ch 22), which effectively
encode the factorization properties of the correlation functions of the Gaussian process, we
reduce (47) to

〈η1η2〉 = 1

π

∞∑
n=0

Rn
G

2nn!

(∫ ∞

−∞
dx exp(−x2)Hn(x)Qdist (erfc(x)/2)

)2

. (49)

Once we have evaluated the integrals we have a power series representation of the mapping
between the correlation functions of the input Gaussian and output non-Gaussian processes.
In a few simple cases the whole calculation can be carried through analytically; in practice
recourse must almost invariably be made to numerical quadrature. The series (49) is usually
found to be fairly rapidly convergent. Once this mapping has been established, it can be inverted
to reveal the correlation properties of the input Gaussian process required to generate a non-
Gaussian process with the specified correlation properties. This method has been applied in
the controlled simulation of correlated, gamma-distributed time series and random fields with
specified properties in [10]. In the work of Hopcraft et al [11] it is applied in the generation of
correlated increments in a fractional non-Brownian motion with a power law structure function
and single-point statistics resembling those of fluctuations in confined turbulent flow and the
critical behaviour of a ferromagnet. Here we shall discuss briefly how coherent sea clutter
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Figure 1. A range–Doppler-intensity plot of radar sea clutter taken with a 10 GHz radar at vertical
polarization from a clifftop site on the south coast of England at a range of 10 km. The vertical
axis is range, sampled at 1.5 m intervals over 750 m. The horizontal axis is Doppler frequency,
from 0 to 250 Hz.

can be simulated; we find that the compound representation allows us to reproduce the salient
features of its behaviour much better than can other methods described in the literature.

Figure 1 shows the variation with range of the Doppler spectrum of high resolution coherent
sea clutter; its modulation by the partially resolved large scale structure of the sea is clearly
evident. The basis of the coherent model is a complex Gaussian process whose correlation
properties are related to its power (Doppler) spectrum by the Weiner–Khintchine theorem [20].
It has been suggested [21] that non-Gaussian coherent sea clutter be modelled by subjecting
such a complex Gaussian process x +iy to a non-linear transformation that imposes the required
single-point statistics. Thus, to generate coherent Weibull clutter we construct

x ′ = x(x2 + y2)
β−1

2

y ′ = y(x2 + y2)
β−1

2

, (50)

where x and y are the real and imaginary parts of the Gaussian data. x ′ and y ′ are now the real
and imaginary parts of the coherent Weibull process, which has single-point power statistics
given by

p(ζ > ζ ′) = exp

[
−

(
ζ ′

〈ζ 〉�(1 + β)

) 1
β
]

(51)

with ζ =
√

x ′2 + y ′2.
It is possible to tailor the correlation properties of the input complex Gaussian to match

those required of the output Weibull process reasonably well; some of the limitations on
correlation properties that can be modelled in this way are discussed in [21]. However, both
the input and output processes in this scheme are stationary; the Weibull clutter does not exhibit
the ‘breathing’ modulation seen in the results in figure 1. The compound representation of the
non-Gaussian clutter process allows us to remedy this defect quite straightforwardly. Rather
than subjecting the complex Gaussian process itself to a non-linear transformation, we multiply
it by a correlated gamma process,generated by the method we have just discussed. This product
will automatically have K-distributed envelope statistics; the slowly varying gamma process
imposes the ‘non-stationary’ breathing modulation while the relatively high frequency structure
of the clutter, revealed in the Doppler spectrum,can be modelled through the spectrum assigned
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Figure 2. Coherent non-Gaussian clutter spectral time series. The left-hand image was generated
using the compound method and the right using the direct non-linear transformation of a complex
Gaussian. The horizontal axes are frequency and the vertical axes are range.

to the complex Gaussian process. In fact, by allowing this latter spectrum to depend on the
current value of the gamma variate and the values of the shape parameter α and mean clutter
power to vary with range, direction and environmental conditions, a very realistic coherent
clutter simulation can be developed.

The difference between the two methods is illustrated qualitatively in figure 2,which shows
the Doppler spectra of simulated clutter as a function of range. Results obtained coherent K-
distributed clutter, simulated using the compound method, are shown on the left; those for
coherent Weibull are simulated using the direct non-linear transformation on the left. The
point amplitude statistics have been chosen to be identical (by setting α = 1/2 and β = 1)
and the average power spectra are approximately the same. The non-stationary behaviour in
the image on the left and the stationary behaviour in that on the right are clearly evident.

6. Conclusions

In this paper we have reviewed some simple random walk and diffusion models for the statistics
of scattered radiation, recalling how the K distribution emerged independently from the analysis
of data collected in the optical and micro-wave regimes. Optical experiments highlighted a
fluctuating population of scatterers as the source of non-Gaussian statistics; high resolution
radar measurements partially resolved the large scale structure of the sea surface, yielding a
‘locally Gaussian’ return with a modulated power. Much of the success achieved in applications
of the K distribution [22–24] must be ascribed to its foundation in these simple, physically
motivated models that capture both the origins of the non-Gaussian statistics and the correlation
properties of the processes it represents. However, the original formulations of the K process,
in terms of coherent scattering, population statistics and the breakdown of the central limit
theorem (in the optical case) and its compound representation (in the radar case) appear,
at first sight, slightly different. The development of a Fokker–Planck description of the K
process brings together these complementary pictures, identifying the gamma modulation in
the compound form as a limit of the negative binomial population fluctuations and working
in the continuous limit throughout. An analysis of the intensity volatility in radar and optical
data suggests that the original FP formulation of the K process should be re-cast slightly to
achieve better agreement with experimental observations. This has led to the development of
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an anomaly detection scheme based on the measurement of ‘short time diffusion constants’
analogous to those determined by light scattering experiments.

We have also discussed the modelling of some salient features of coherent sea clutter by
computer simulation. The compound representation of the process, as a rapidly de-correlating
speckle process whose power is itself a much more slowly, but nonetheless randomly, varying
quantity, modelled separately as a correlated gamma process, is particularly well suited to this
purpose. Unfortunately the relatively simple dynamics captured by diffusive models are not
sufficiently flexible to mimic the correlation properties of sea clutter realistically. When we
consider the complexity and variability of the processes that govern the motion of the sea,
this is perhaps not that surprising. However, the development of a method for the controlled
simulation of gamma-distributed random variables with a specified correlation function allows
us to construct realistic one- and two-dimensional clutter models.
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